
An Instructional Design Model for Teaching Science Concepts to Visually Impaired Students

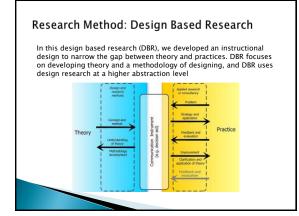
Mustafa SOZBILIR, Aydin KIZILASLAN, & S. Levent ZORLUOGLU

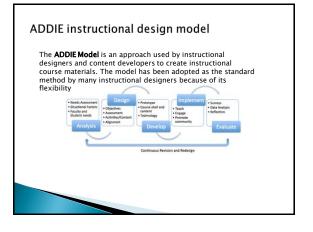
Definitions of visual impairment

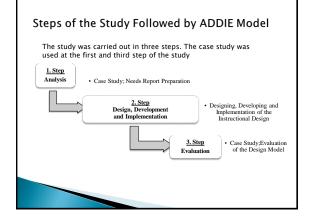
Visual impairment, also known as vision impairment or vision loss, is a decreased ability to see for a degree that causes problems can't be corrected fully with glasses, contact lenses, medication or eye surgery.

- Functionally blind: the student will use tactual media (which includes braille) as a primary tool for learning to be able to communicate in both reading and writing at the same level of proficiency as other students of comparable ability
- Low vision: can read with magnification or environmental modification
- Totally blind: must use tactual media (which includes braille) and auditory learning; no meaningful input through vision

Teaching science to visually impaired students


- The students who are blind or visually impaired will typically need variety of assistance to explore and examine real materials or models together with some adaptations in the environment in order to let students having safe and full access to science.
- They must be exposed to a variety of experiences in science that can reasonably be explored.
- Science materials may include talking devices, tactile charts, reading materials, and equipment. But traditionally science teaching mostly depends on visual instruction.




Research questions

In this study, we developed an instructional design to teach the concepts of 'Matter and Heat' unit to visually impaired students. The answers of following questions were sought in the study:

- What is students' conceptual learning difficulties related to the concepts of 'Matter and Heat' unit?
- What criteria should be considered while developing materials to teach 'Matter and Heat' unit to visually impaired students?
- What is the effect of the instructional design model developed on students' conceptual learning of concepts of 'Matter and Heat' unit?

			th of sample groups we
studied same s	Students Code	Illy impaired stud	
			Visual Acuity
	SNA1	Male	Low vision
Needs Analysis phase	SNA2	Male	Low vision
Sample Group	SNA3	Female	Low vision (advanced)
	SNA4	Female	Low vision
	SNA5	Male	Low vision
	SNA6	Female	Low vision
	S1	Female	Blind
Implementation Phase	S2	Female	Low vision (advanced)
	\$3	Female	Low vision
Sample Group	S4	Male	Low vision
	S 5	Male	Low vision
	S6	Male	Low vision
	S7	Male	Blind

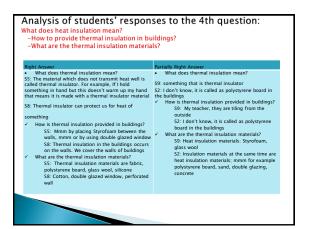
The same achievement test was applied before and after the implementation of the study as the pre-test and post-test.

Findings

In this section, the findings obtained from the descriptive analysis of data gathered from achievement test and interviews will be shown

List of the learning outcomes

- 1.
- LO1: Classify materials in terms of heat conduction (Conceptual knowledge/ Understanding dimension) LO2: Discuss the importance of heat insulation in buildings with regard to the effective use of resources, family and country economies (Conceptual knowledge/ Analyze dimension) 2
- LO3: Determines the selection criteria of thermal insulation materials used in buildings (Conceptual knowledge/ Understanding dimension)
- **LO4:** Develop alternative thermal insulation materials Conceptual knowledge/ Create dimension)
- **LOS:** Classifies fuels as solid, liquid and gaseous fuels and gives examples of widely used fuels (Conceptual knowledge/ Understanding dimension) 5.
- LO6: Investigates and presents the effects of different types of fuels on heat, human and environment (Procedural knowledge/ Apply 6. dimension)
- LO7: Investigate precaution to be taken regarding stove and natural gas poisoning (Procedural knowledge/ Apply dimension) 7.


The result of pre-test-post-test analysis

				Students														Outcomes Based	
earning Outcomes	Questions	5	1	5.2		5.3		5.4		5	5	5.6		5.7		Question Based Achievement (1)		Achievement (19	
	ð	Pre Test	Post Test	Pre Test	Post Test	Pre Test	Post Te												
	4	x	х	x	1	~	4	х	x	x	~	x	~	x	1	114	65.6		
	5	x	ж	x	х	ж	~	ж	×	1	ж	x	х	x	1	11.1	22.2		65.6
LOI	7	x	~	x	1	~	1	x	~	1	~	x	~	x	1	22.2	77.7	22.2	
	8	1	~	x	x	х	1	х	1	4	~	x	~	~	1	33.3	77.7		
	12	x	x	x	1	x	1	~	~	1	~	x	~	~	1	33.3	55.5		
102	9	~	~	~	1	x	x	х	x	×	~	x	~	~	x	33.3	44.4		63.0
	13	x	~	~	x	x	~	x	x	4	~	x	~	~	1	33.3	77.7	25.9	
	15	~	~	x	1	х	~	х	x	×	~	x	~	x	1	11.1	66.6		
101	2	x	x	×	1	~	~	×	~	1	~	×	~	~	1	11.1	55.5		
	6	x	~	x	×	~	~	х	x	×	~	x	~	~	1	33.3	65.6	29.6	66.6
	10	~	x	×	×	×	×	×	~	1	x	×	~	x	×	22.2	44.4		
	11	x	x	1	x	х	x	~	x	×	1	x	x	x	x	11.1	22.2	16.6	33.3
L04	15	x	x	×	×	×	~	×	~	×	~	×	x	x	1		44.4	16.6	
	1	x	~	×	1	×	~	x	x	x	~	×	~	x	1	0	77.7		48.1
LOS	3	×	×	×	×	×	×	×	1	×	×	×	x	×	x		11.1	3.7	
	14	x	~	×	×	×	~	x	x	x	x	x	~	~	1	11.1	\$5.5		
	16	x	×	×	1	×	~	×	1	1	~	×	x	x	x	11.1	44.4		44.4
106	17	x	×	~	1	×	×	×	~	1	х	×	~	~	x	33.3	44.4	22.2	
	19	x	~	×	1	×	~	×	~	1	~	x	~	~	x	22.2	66.6		
L07	20	x	×	×	1	×	×	x	x	x	~	×	~	×	1	22.2	66.6	22.2	66.6
he student Achieven	90) 31 BC	20		20		20	70	10	50	50	75	0	75	45	65	38.8	\$7.7	20.4	55.5
ain score of each st	dents		31	~	44	1	63	2	64		50		rs .	-3	6	.44		20.4	33.3
			-					_											

						Students					Question	LO	
Learning	Question										based	based	
Outcomes		S 1	S 2	S 3	S 4	S 5	S 6	S 7	S 8	S 9	Achievement	Achievement	
											(%)	(55)	
	1	~	~		~	1	~	~	~	x	87.5		
	2	1	1	view	1	1	1	~	1	1	100	93.7	
LO1	3		1	Did not participated the interview	~	1	1	1	1	~	93.7		
	4	1		the	1	1	1	~	1		87.5	93.7	
LO2	5	~	~	fed	~	~	~	~	~	~	100	93.7	
LO3	6	1	1	icipa	1	1	1	1			93.7	93.7	
LO4				part			No	question	is asked f	or this ou	tcome		
LOS	7	~		not	1	1		~	1		81.2	81.2	
LO6	8	~		ă	1	1	1	1	1	1	93.7	93.7	
L07	9	~			1	1		1	1		81.2	81.2	
Average Achievement	: 09	94.4	77.8		100	100	88.9	100	94.4	72.2	90.9	89.5	

Example of Heat Conductors and Insulators	Right Answers	Partially Right Answers
Air	S7 : insulator	S1 : thermal insulator
	S8 : insulator S7 : conductor	
Cupper	S8 : conductive	
	S7 : insulator	
Vood	S8 : insulator	
Chaff	S7 : insulator	
Linan	S8 : insulator	
Concrete	S7 : insulator	
concrete	S8 : insulator	
Polystyrene board	S7 : insulator	
	S8 : insulator	
Aluminum	S7 : conductor	S1 : insulator, thermal
	S8 : conductive S7 : insulator	conductor transfer heat
Dotton	S7 : insulator S8 :insulator	
	S8 :insulator S7 : conductor	
ron	S8 : conductive	
	S6 : conductive	
latinum	S8 : conductive	
N	S7 : insulator	
Plastic	S8 : insulator	
Class	S7 : conductor	
21033	S8 : conductive	

Analysis of the students' responses to the 2rd

Comparison of interview and post-test achievements

					Learning Level of Outcome (90															
Outcomes	S1 S2		\$3		s	S 4		\$\$		\$6		57		58		59		eral ment of ass (%)		
	Rost-test	Interview	Post-test	Interview	Post-test	Interview	Post-test	Interview	Post-test	Interview	Post-test	Interview	Rost-test	Interview	Post-test	Interview	Post-test	Interview	Post-test	Interview
LOI	40	83.3	60	100	100		60	100	80	100	80	100	100	100	40	100	40	66.6	66.6	93.7
L02	100	100	66.6	75	66.6		0	100	100	100	100	100	66.6	100	33.3	100	33.3	75	63.0	93.7
LO3	33.3		33.3		66.6		66.6		66.6		100		66.6		66.6		100		66.6	
L04	0	100	0	100	50		50	100	100	100	0	100	50	100	0	50	50	100	33.3	93.7
LOS	66.6	100	33.3	50	66.6		33.3	100	33.3	100	66.6	50	66.6	100	66.6	100	0	50	48.1	81.2
LOS	0	100	100	50	50		100	100	50	100	50	100	0	100	50	100	0	100	44.4	93.7
L07	50	100	100	50	50		50	100	100	100	100	50	50	100	50	100	50	50	66.6	81.2
Achievement (%)	41.4	97.2	51.4	70.8	64.3		51.4	100	75.7	100	70.9	83.3	57.1	100	43.8	91.6	39.0	73.6	55.5	89.5
	-																			
			-																	
					<u> </u>		_													

Results and discussion

- Visual sense is important in teaching science. But while teaching science to individuals who are blind or have low vision, the activities and instructional materials should be designed by considering the different senses like as smelling, tasting, hearing and touching
- According to results of question-based achievement score analysis of pre-test (38.8%) and post-test (57.7%).
- On the other hand outcome-based analysis of achievement of post-test shows that the students showed higher achievement in question related LO1, LO3 and LO7 learning outcomes.
 The achievement score these outcomes is 66.6%.
- The achievement score these outcomes is 66.6%.
- On the other hand, the Gain Score analysis (0.44) that done between pre-test and post-test show that our the instructional design model has 44% success on students' understanding concept of unit.

Results and discussion

- Totally nine questions asked at interview and some of them are in-depth questions. According to question-based analysis of interviews, students had much better achievement as 90.9%. The same is true for outcome-based analysis as 89.5%.
- As a result, in the study, activities and materials that designed considering the students' unique needs has meaningful and significant contribution on students learning of the science concepts. At the same time the interview is one of the best assessment tools to assess students leaning.

Thanks for your attention

Questions?

Contact: sozbilir@atauni.edu.tr

Project web page: <u>http://efe.atauni.edu.tr</u> in Turkish but summary in English

Acknowledgment

This study was funded by the Scientific and Technological Research Council of Turkey by the Grant # 114K725. The authors would like to thank the teachers and students who voluntarily participated in this study