ECRICE 2016
European Conference on Research in Chemical Education
BARCELONA 7-10 September

BOOK OF ABSTRACTS

EuCheMS
European Chemical Sciences

SOCIETAT CATALANA QVIMICA
INSTITUT D'ESTUDIS CATALANS
Organizing Committee

Carles Bo, Institute of Chemical Research of Catalonia, Spain
Consol Blanch, Universitat de Vic, Spain
Aureli Caamaño, Societat Catalan de Química, Spain
Jordi Cuadros, IQS Univ. Ramon Llull, Spain
Pere Grapi, Societat Catalana d’Història de la Ciència, Spain
Fina Guitart, CESIRE-Departament d’Ensenyament/Universitat de Barcelona, Spain
Jan Lundell, University of Jyväskylä, Finland
Iwona Maciejowska, Jagiellonian University, Poland
Angel Meseguer, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Spain
Gabriel Pinto, Universidad Politécnica de Madrid, Spain

International Advisory Board

Jan Apotheker, University of Groningen, The Netherlands
Nina Aremo, University of Helsinki, Finland
Karolina Broman, Umeå University, Sweden
Aureli Caamaño, Societat Catalan de Química, Spain
Liberato Cardellini, Università Politecnica delle Marche, Italy
Peter Childs, Limerick University, Ireland
Hana Ctnáctová, Charles University in Prague, Czech Republic
Martin J Goedhart, University of Groningen, The Netherlands
Fina Guitart, CESIRE-Departament d’Ensenyament/Universitat de Barcelona, Spain
Svetomir Hadzi Jordanov, Faculty of Technology and Metallurgy, Skopje, Macedonia
Mariann Holmberg, Arcada University of Applied Sciences, Helsinki, Finland
Jens Josephsen, Stockholm University, Sweden
Nenad Judas, University of Zagreb, Croatia
Jean-Claude Kaell, Association Jeunes Scientifiques, Luxemburg
Klemens Koch, PH Bern Institut Sekundarstufe II, Bern, Switzerland
Vojin Krismanović, University of Belgrade, Serbia
Iwona Maciejowska, Jagiellonian University, Poland
Maria Elisa Maia, University of Lisboa, Portugal
Rachel Mamlok-Naaman, Weizmann Institute of Science, Israel
Pascal Mimero, École supérieure de chimie physique électronique de Lyon, France
Ilka Parchmann, Christian-Albrechts-University of Kiel, Germany
Miia Rannikmäe, University of Tartu, Estonia
COMMITTEES

Jan Reguli, Trnava University in Trnava, Slovakia
Antonella Rossi, Università degli Studi di Cagliari, Italy
Mustafa Sözbilir, Ataturk University, Turkey
Kristian Steffensen, Norwegian Chemical Society, Norway
Luca Szalay, Eötvös Loránd University, Hungary
Dragica Trivic, University of Belgrade, Serbia
Georgios Tsaparlis, University of Ioannina, Greece
Margareta Vrtačnik, University of Ljubljana, Slovenia
Paul Yates, University of Chester, UK
Uri Zoller, University of Haifa, Israel

Scientific Committee

Lemonia Antonoglou, Aristotle University of Thessaloniki, Greece
Jan Apothekeer, University of Groningen, Netherlands
Consol Blanch, Universitat de Vic, Spain
Carles Bo, ICIQ Institut Català d’Investigació Química, Spain
Karolina Broman, Umeå University, Swedish
Aureli Caamaño, Societat Catalana de Química, Spain
Liberato Cardellini, Università Politecnica delle Marche, Italy
Peter Childs, Limerick University, Ireland
Hana Čtnáctová, Charles University in Prague, Czech Republic
Jordi Cuadros, IQS Univ. Ramon Llull, Spain
Josep Duran, Universitat de Girona, Spain
Odilla Finlayson, Dublin City University, Ireland
Martin Goedhart, University of Groningen, Netherlands
Pere Grapi, Societat Catalana d’Història de la Ciència, Spain
Fina Guitart, CESIÈRE-Departament d’Ensenyament/Universitat de Barcelona, Spain
Mercè Izquierdo, Universitat Autònoma de Barcelona, Spain
Jens Josephsen, Stockholm University, Swedish
Nenad Judas, University of Zagreb, Croatia
Jan Lundell, University of Jyväskylä, Finland
Teresa Lupión, Centro del Profesorado (CEP) de Málaga/Universidad de Málaga, Spain
Iwona Maciejowska, Jagiellonian University, Poland
Rachel Mamlok-Naaman, Weizmann Institute of Science, Israel
Claudi Mans, Universitat de Barcelona, Spain
Manuela Martín, Universidad de Salamanca, Spain
Angel Messeguer, Institute of Advanced Chemistry of Catalonia (IQAC), Spain
Pascal Mimero, École supérieure de chimie physique électronique de Lyon, France
Fátima Paixão, Instituto Politécnico de Castelo Branco, Portugal
Ilka Parchmann, Christian-Albrechts-University of Kiel, Germany
Gabriel Pinto, Universidad Politécnica de Madrid, Spain
Miaa Rannikmäe, University of Tartu, Estonia
Neus Sanmartí, Universitat Autònoma de Barcelona, Spain
Mustafa Sözbilir, Ataturk University, Turkey
Montse Tortosa, INS Sabadell, Spain
Dragica Trivic, University of Belgrade, Serbia
Georgios Tsaparis, University of Ioannina, Greece
Amparo Vilchez, Universidad de Valencia, Spain
Paul Yates, University of Chester, UK
Uri Zoller, University of Haifa, Israel
An Instructional Design for Teaching Particulate Nature of Matter to Visually Impaired Students

S. Levent Zorluoğlu, Aydin Kizilaslan & Mustafa Sozbilir

1Arvin Çoruh University, Department of Primary Education, Artvin, Turkey
2Ataturk University, Department of Secondary Science & Mathematics Education, Erzurum, Turkey

Science typically provides students with a variety of opportunities to explore and examine real materials or models closely even if they are visually impaired. Science naturally provides visual impaired with the opportunities to develop their tactual exploration and fine motor skills through the exploration and manipulation of real materials. But traditionally science teaching mostly depend on visual instruction. This makes science learning difficult for visually impaired students. On the other hand, blind students have no visual input at all. So, some arrangements and accommodation should be done at teaching due to visual impairment.

Design based research (DBR) method was used in this study. DBR approach has been suggested as a solution for the connections between educational research and praxis. The research was carried out in three steps. In the first step, visually impaired students’ individual needs have been identified in terms of scientific process skills and conceptual understanding regarding “The particulate nature of matter” unit. At this step, the embedded single-case design was used. In the second step, instructional materials and activities were designed. In the last step, the instructional materials that are designed for teaching particulate nature of matter to visually impaired students were evaluated in term of practicality, applicability and shortcomings. At this stage, the embedded single-case design was used.

Participant of this activity was eight students including three blind students. The implementation of unit has lasted nearly four weeks. Academic achievement test and semi-structured interview form were used as a data collection tools to determine effectiveness of instructional design. Students’ success was observed as 78% when interviews and tests were analysed compared with the analysis that have done before starting implementation of instructional design. Nearly all of the students said they were quite satisfied with model and will be satisfied if all courses would be taught with this model