A RESEARCH-BASED DESIGN FOR TEACHING MATTER AND HEAT TO VISUALLY IMPAIRED STUDENTS

Mustafa SOZBILIR Email: sozbilir@atauni.edu.tr
Aydın KIZILASLAN & S. Levent ZORLUOGLU

This study is part of a project financially supported by TUBITAK with contract number 114K725

IMPAIRMENTS & DISABILITY

- Impairments are problems in body function or alterations in body structures such as blindness (WHO, 2011).
- Disability is defined as the loss or limitation of opportunities to take part in society on an equal level with others due to social and environmental barriers (Northern Officer Group Report, 2002).
- WHO states that disability is not an attribute of the person, but inaccessible environments create disability by creating barriers to participation and inclusion.

VISUAL IMPAIRMENT (VI)

- Visual impairment (VI), also known as vision impairment or vision loss, is a decreased ability to see to a degree that causes problems not fixable by usual means, such as glasses (WHO, 2011).

CAUSES OF VI

- Congenital: Impairment occurs before or at birth, visual memory not developed.
- Adventitious: Impairment acquired after birth, visual memory may not developed.

TERMS USED IN VI

- Blind: refers to individuals with no vision or only light perception.
The word ‘blind’ is only a physical description of a person’s vision and should not be used for the person’s abilities, intelligence, personalities, or interest.

TERMS USED IN VI (CONT.)

- Legal blindness: is defined as
 - central visual acuity of 20/200 (or 6/60 in metric system) or less in better eye with best correction or
 - a central visual acuity of more than 20/200 if there is a visual field defect in which the peripheral field is contracted to such an extent that widest diameter of visual field subtends an angular distance of no greater than 20 degrees.
- Inability to read the top letter from 20 feet is considered legally blind.

https://en.wikipedia.org/wiki/Snellen_chart
TERMS USED IN VI (cont.)

- **Low vision** is generally defined as:
 - a central visual acuity of 20/70 to 20/200 in the better eye with correction,
 - a visual field of 20 to 40 degrees or less in better eye with correction.

Since the term **blind** has a negative connotation to some people, some prefer to use **visually impaired**.

VI VS SIGHTED STUDENTS

- Students with VI are required to complete the same curriculum and examinations as sighted students.
- However, resources and instructional methods are based on the vision is partly or not accessible at all by visually impaired students.

CHALLENGES OF VISUAL IMPAIRMENT IN THE CLASSROOM

- Fewer opportunities to acquire information visually (i.e. maps, art)
- Learning Difficulties
 - may read very slowly – fall behind
 - difficult to meet the demands of general education classroom (note taking, etc)
- Social difficulties
 - can’t catch non-verbal cues from others
 - inability to judge distance (i.e. stand too close when socializing)

TEACHING SCIENCE TO VISUALLY IMPAIRED STUDENTS

- The students who are blind or visually impaired will typically need variety of assistance to explore and examine real materials or models together with some adaptations in the environment in order to let students having safe and full access to science.
- They must be exposed to a variety of experiences in science that can reasonably be explored.
- Science materials may include talking devices, tactile charts, reading materials, and equipment. But traditionally science teaching mostly depends on visual instruction.

PURPOSE OF THE RESEARCH

- Identify VI students’ needs in learning science
- Development accessible instructional materials and activities for students with VI
- Develop design principles for instructional materials for VI students in science
Research Questions

1. What are the students’ needs for the learning the concepts of Matter and the Heat unit?
2. How to develop instructional materials and activities that accessible by VI students?
3. What are the design principles for developing instructional materials for VI students in science with particular emphasis on Matter and heat unit?
4. What are the factors affecting the usefulness of the developed instructional design model?

Research Method: Design Based Research

In this design based research (DBR) study, we developed an instructional design to narrow the gap between theory and practices. DBR focuses on developing theory and methodology of designing, and DBR uses design research at a higher abstraction level.

Research Methodology

The steps of the design-based research are:

1. Need analysis
2. Design
3. Implement
4. Evaluate
5. Re-design
6. Evaluate

ADDIE Instructional Design Model

The ADDIE Model is an approach used by instructional designers and content developers to create instructional course materials. The model has been adopted as the standard method by many instructional designers because of its flexibility.

The Study Groups

<table>
<thead>
<tr>
<th>Sample Group (2014-15)</th>
<th>Students No.</th>
<th>Gender</th>
<th>Visual acuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA1</td>
<td>Male</td>
<td>Low vision</td>
<td></td>
</tr>
<tr>
<td>NA2</td>
<td>Male</td>
<td>Low vision</td>
<td></td>
</tr>
<tr>
<td>NA3</td>
<td>Female</td>
<td>Low vision (advanced)</td>
<td></td>
</tr>
<tr>
<td>NA4</td>
<td>Female</td>
<td>Low vision</td>
<td></td>
</tr>
<tr>
<td>NA5</td>
<td>Male</td>
<td>Low vision</td>
<td></td>
</tr>
<tr>
<td>NA6</td>
<td>Female</td>
<td>Low vision</td>
<td></td>
</tr>
<tr>
<td>NA7</td>
<td>Male</td>
<td>Low vision</td>
<td></td>
</tr>
<tr>
<td>NA8</td>
<td>Female</td>
<td>Low vision (advanced)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample Group (2015-16)</th>
<th>Students No.</th>
<th>Gender</th>
<th>Visual acuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ö1</td>
<td>Female</td>
<td>Blind</td>
<td></td>
</tr>
<tr>
<td>Ö2</td>
<td>Female</td>
<td>Low vision (advanced)</td>
<td></td>
</tr>
<tr>
<td>Ö3</td>
<td>Female</td>
<td>Low vision</td>
<td></td>
</tr>
<tr>
<td>Ö4</td>
<td>Male</td>
<td>Low vision</td>
<td></td>
</tr>
<tr>
<td>Ö5</td>
<td>Male</td>
<td>Low vision</td>
<td></td>
</tr>
<tr>
<td>Ö6</td>
<td>Male</td>
<td>Low vision</td>
<td></td>
</tr>
<tr>
<td>Ö7</td>
<td>Male</td>
<td>Low vision</td>
<td></td>
</tr>
<tr>
<td>Ö8</td>
<td>Male</td>
<td>Low vision (advanced)</td>
<td></td>
</tr>
</tbody>
</table>

The Teacher

- Worked with a teacher:
 - a male temporary replacement teacher, with no teaching experience, first time teaching.
 - Has no training for teaching VI students.
DATA COLLECTION TOOLS
- Interviews and observations constitute the main data collection tools in this study.

1. **Science lesson observation form** (Needs analysis)
2. **Science activities observation form** (Evaluation)
3. Semi-structured **teacher and students** interview form (Needs Analysis + Evaluation)
4. **Academic achievement tests** (Evaluation)

24th ICCE August 15-20, 2016 Kuching Malaysia

ANALYSIS

- Classroom design and location of furniture
- Availability of enlarged text according to the needs of student's impairment
- Clear verbal communication during teaching process
- The efficient use of time
- The introduction of the materials
- Students' difficulties in distinguishing between the concepts of heat and temperature
- The difficulties are experienced in the heat conduction ways
- Fuel types are not acquired
- Activities for the whole concept should be developed
- Exam paper should be Century Gothic, double-spaced, at least 18 points for students with low vision
- Multiple choice test questions should be read by an assistant for blind students or printed in Braille

24th ICCE August 15-20, 2016 Kuching Malaysia

NEEDS

- VI students have several conceptual misunderstandings/no understanding of basic concepts
- VI students are tend to learn through memorisation
- VI students need to develop practical skills, scientific process skills, critical thinking skills based on the practice, writing and reading skills are weak.
- VI students have negative views on science and mathematics. Be aware of this!
- Each VI student has different needs due to their visual acuity, personal needs, education background etc.
- VI students are easily distracted, lost connection.

24th ICCE August 15-20, 2016 Kuching Malaysia

DESIGN

Learning outcomes of ‘Matter and Heat’ unit were classified according to the Revised Bloom’s Taxonomy and designed activities are analyzed according to Science Curriculum to the learning areas

24th ICCE August 15-20, 2016 Kuching Malaysia

DEVELOPMENT

In the light of data obtained from the analysis and design stages of ADDIE model guides were developed

- **Teacher’s Guide**
- **Student Guide**
IMPLEMENTATION

- Design model was applied for four weeks (4 hours in each week) total of 16 hours.
- All lessons were recorded by video camera.
- Activity sheets were distributed to students before each lesson.
- Each class included practical activities accessible by VI students.
- Students were given extra time to investigate the materials at the beginning.
- They were allowed to carry activities as small group (2-3 students) as well as individually.

SAMPLE CLASS BEFORE & AFTER

<table>
<thead>
<tr>
<th>Topic: Heat conductor and heat insulator</th>
<th>Observation Date: 03.25.2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observation Before The Intervention</td>
<td></td>
</tr>
</tbody>
</table>

EVALUATION

At this stage instructional design model was evaluated by the following data collection tools:

- Data collection tools to evaluate the Instructional Design
- Revised Bloom’s Taxonomy
- Research Curriculum to the learning terms
- Functionality and usability of activities
- Academic achievement tests
- Teacher and student views

DATA OF EVALUATION STAGE OF ADDIE MODEL

- All qualitative data is currently in the analysis phase. Only results of academic achievement tests are available.
- Quantitative data is based on achievement scores on the test taken.
- Gain score analysis was used to see the students gains. Because the gain score controls for individual differences in pretest scores by measuring the posttest score relative to each person’s pretest score.

GAİN SCORE ANALYSIS OF ACADEMIC ACHIEVEMENT TESTS

Calculate using pre/post test scores:

\[g = \frac{(%text{posttest} - %text{pretest})}{(100 - %text{pretest})} \]

<table>
<thead>
<tr>
<th>Student #</th>
<th>PRE score (%)</th>
<th>POST score (%)</th>
<th>Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>32</td>
<td>65</td>
<td>0.49</td>
</tr>
<tr>
<td>02</td>
<td>45</td>
<td>68</td>
<td>0.42</td>
</tr>
<tr>
<td>03</td>
<td>24</td>
<td>75</td>
<td>0.67</td>
</tr>
<tr>
<td>04</td>
<td>10</td>
<td>55</td>
<td>0.50</td>
</tr>
<tr>
<td>05</td>
<td>15</td>
<td>58</td>
<td>0.51</td>
</tr>
<tr>
<td>06</td>
<td>18</td>
<td>48</td>
<td>0.37</td>
</tr>
<tr>
<td>07</td>
<td>24</td>
<td>72</td>
<td>0.63</td>
</tr>
<tr>
<td>08</td>
<td>10</td>
<td>45</td>
<td>0.39</td>
</tr>
</tbody>
</table>

\[g: \text{0.49} \]

“High-g” courses as those with > 0.7

“Medium-g” courses as those with 0.7 > () > 0.3;

“Low-g” courses as those with < 0.3.

COMPARISON OF PRE & POST-TEST

- Pre Test
- Post Test
- Students' scores before and after the intervention.
DISCUSSION

- As a result, the design model has led to a change in the students' academic success rate of 49% (medium g).
- However, the observations showed evidence that VI students gained practical skills such as measuring, recording, reporting as well as analysis and critical thinking skills.
- VI students negative views on science started to become change. However, it seems they still see science as enjoyment or play rather than something part of their life!
- Each VI student has different needs. VI students needs should be identified individually.
- Close collaboration of working together students, teachers, parents and experts are required.
- As VI students are easily distracted by unnecessary details, materials has to be simple and focussed.
- As their reading and writing skills are so weak, it is better to give them handouts for the activities and materials.

Mustafa SÖZBİLİR
Atatürk University, Erzurum, Turkey
Email: sozbilir@atauni.edu.tr